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Stationary shear flow around fixed and free
bodies at finite Reynolds number
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Numerical solutions of stationary flow resulting from immersion of a single body in
simple shear flow are reported for a range of Reynolds numbers. Flows are computed
using finite-element methods. Comparisons to results of asymptotic low-Reynolds-
number theory, experimental study, and other numerical techniques are provided.
Results are presented primarily for isotropic bodies, i.e. the circular cylinder and
sphere, for both of which the two conditions of a torque-free (freely-rotating) and fixed
body are investigated. Conditions studied for the sphere are 0<Re � 100, and for
the circular cylinder 0 <Re � 500, with the shear-flow Reynolds number defined as
Re = γ̇ a2/ν; γ̇ is the shear rate of the Cartesian simple shear flow u = (γ̇ y, 0, 0),
a is the cylinder or sphere radius, and ν is the kinematic viscosity of the fluid.
In the torque-free case, the rotation rate of the body decreases with increasing Re.
Qualitative dependence, seen in the Re= 0 fluid flow field, upon whether the body
is fixed against rotation or torque-free vanishes as Re increases and the fluid flow is
more similar to that around the Re= 0 fixed body: the influence of rotation of the
body and the associated closed streamlines are confined to a narrow layer about the
body for Re >O(1). Separation of the boundary layer is observed in the case of a fixed
cylinder at Re ≈ 85, and for a fixed sphere at Re ≈ 100; similar separation phenomena
are observed for a freely rotating cylinder. The surface stress and its symmetric first
moment (the stresslet) are presented, with the latter providing information on the
particle contribution to the mixture rheology at finite Re. Stationary flow results
are also presented for elliptical cylinders and oblate spheroids, with observation of
zero-torque inclinations relative to the flow direction which depend upon the aspect
ratio, confirming and extending prior findings.

1. Introduction
This work describes simple shear flow around isolated bodies at finite Reynolds

number. We consider primarily the geometries of circular cylinder and sphere, but
will also present results for inertial shear flow about elliptical cylinders and oblate
spheroids. Analytical Stokes-flow solutions for shear flow around the sphere and
circular cylinder are well known, but the role of inertia upon the fluid motion is
not thoroughly understood. This lack of detailed understanding of particle-scale
shear flows hinders both progress in describing hydrodynamic interactions in inertial
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suspension flows and development of the averaged-equation description of such flows
(Koch & Hill 2001; Sundaresan et al. 2003). The limited understanding of inertial
effects at the single-body level in shear flows is surprising given the abundant study of
bodies in a uniform stream, as well as recent many-particle shear-flow simulations at
finite Reynolds number (e.g. Huang & Joseph 2000). However, the literature provides
little description of inertial shear flow alone, i.e. without a uniform component, about
isolated bodies.

The primary goal of this work is to improve upon this situation by establishing,
through solutions obtained numerically, a detailed description of the stationary flows
resulting from a single cylinder or sphere in a simple shear flow over a wide range of
Reynolds number. The Reynolds number for the simple shear flow is defined on the
scale of the body as Re = γ̇ a2/ν, where γ̇ is the shear rate, ν is the fluid kinematic
viscosity, and a is the radius of the sphere or cylinder. When describing results from
other work, we convert to this definition of the Reynolds number if necessary.

Particle interactions with flowing fluid are basic to the study of diverse topics. For
a body and fluid in relative translational motion at a speed U , the inertia is defined
by the translational Reynolds number, ReU = UL/ν with L the characteristic size of
the body. The resulting flow may represent situations ranging from sedimentation of
silt at essentially vanishing inertia to projectile motion where ReU � 1. Results from
prior work in this area for simple geometries are abundant. Among these are results
which have long been textbook material, such as the drag force, known over a wide
range of ReU and typically expressed in dimensionless form as the drag coefficient.
This wealth of knowledge is not mirrored when consideration is broadened to linear
flows.

We consider a particle in the undisturbed simple shear flow given by u∞ =
(ux, uy, uz) = (γ̇ y, 0, 0). Recalling that simple shear flow is composed in a kinematic
sense of equal parts rotational and extensional flow, pure extension is a more
basic flow, but simple shear has certain advantages. From a numerical perspective,
steady simple shear is convenient because it is an exact solution of the Navier–
Stokes equations for any value of the Reynolds number. Simple shear flow may
also be experimentally approximated more simply, and critically over much larger
experimental test volumes, than extensional flow (Higdon 1993).

Experimental study of flow around cylinders symmetrically placed in simple shear,
such that they experience zero net force, has been performed by Poe & Acrivos
(1975), who found good agreement with the numerical results of Kossack & Acrivos
(1974) for Re < 6 with loss of steadiness for larger Re. This loss of steadiness appears
to have been due to experimental difficulties, as more recent study of the shear
flow around a circular cylinder by Zettner & Yoda (2001a) for 0 <Re < 20 found
steadiness at all conditions. These studies found that the rotation speed decreased
with Re and demonstrated some asymmetry in flow patterns, all for unseparated flow.
Little analogous experimental work has examined the role of inertia on the local flow
around force-free spheres in simple shear although some results have been provided by
Poe & Acrivos. Note that the influence of force-free spheres and cylinders upon fluid
mechanical features at much larger scale, including streamwise vortex generation near
turbulence onset, has been demonstrated (Bottin, Dauchot & Daviaud 1997; Bottin
et al. 1998).

As evidenced by the scarcity of studies devoted to the topic, experimental study of
shear flow about suspended particles presents a number of difficulties, especially if
interest is in the force-free case. Numerical studies are arguably more convenient and
certainly provide results of greater detail. We study the case of a particle symmetrically
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placed in the shear flow u∞ described above such that it is free of a net hydrodynamic
force, and examine both the freely-rotating (zero net torque) and fixed conditions. One
motivation is that, in the freely rotating case, the flow and particle-induced stress have
direct relevance to suspension mechanics at finite-particle-scale inertia. The resulting
flow corresponds physically to the flow observed from the frame of reference of a
neutrally buoyant particle released in an infinite simple shear flow after allowing the
body to take on the force- and torque-free motion.

Work addressing inertial stresses in a dilute suspension by Lin, Peery & Schowalter
(1970) was initiated at about the time that Batchelor (1970) described the stress system
in a suspension of force-free particles, but suspension stress at finite Re remains very
poorly understood relative to the Re= 0 case. Most analysis at finite inertia has
been limited to Re � 1, where matched asymptotic expansions have been used to
analyse weakly inertial simple shear flow about a circular cylinder by Robertson &
Acrivos (1970) and about a sphere at finite Re by Lin et al. The same methodology,
augmented by the Lorentz reciprocal theorem (Kim & Karrila 1991), has been used
to examine the role of weak inertia in a general linear flow around an immersed
sphere by Stone, Brady & Lovalenti (2001). Loss of fore–aft symmetry of the flow
about an isotropic body leads to predictions of finite normal stress differences (absent
for a single sphere at Re =0 owing to symmetries of both body and flow), in addition
to inertial effects upon the dilute suspension viscosity. Dilute suspension viscosity in
axisymmetric extension about a single sphere for Re up to O(1000) was studied by
Ryskin (1980) using a vorticity–streamfunction formulation.

Numerical studies have provided some insight into inertial effects at higher Re. The
flow about a symmetrically placed cylinder in simple shear was approximated using
a finite-difference method by Kossack & Acrivos (1974) for 0 <Re < 70; we note that
our work suggests certain streamline plots in this reference (e.g. their figure 7a at
Re = 10) are inverted in the shear gradient direction. The analogous problem for a
sphere in simple shear has been studied by Nirschl, Dwyer & Denk (1995) for a wall-
bounded geometry at 0.025 <Re < 25 using a finite-volume scheme. The influence of
inertial flow upon the rheology of a dilute suspension of disks was performed by
Patankar & Hu (2002); from finite-element-based numerical solutions of simple shear
around a circular cylinder, Patankar & Hu extracted the first normal stress difference
(the second normal stress difference is undefined in this case) up to Re= 5.

It is worth noting that there exist a number of finite-Reynolds-number numerical
studies examining linear flow combined with a uniform translation past particles.
Examples include those of Dandy & Dwyer (1990) who studied uniform motion
plus simple shear, and of Bagchi & Balachandar (2002, 2003) who have provided
a thorough examination for a sphere immersed in combined uniform flow and
extensional flow as a function of Reynolds number. However, neither of these, nor to
our knowledge any other, studies addressing uniform-plus-linear flow considered the
problem of a force-free particle which is our focus.

In this work, we present velocity and pressure fields around suspended bodies
computed using finite-element methods. We also provide results demonstrating the
evolution with Re of the contribution to the bulk stress due to the surface stresses
on the particle. In the following section, the problems are defined and the methods
used for their numerical solution are presented; the validation of the method includes
results for non-isotropic particles in shear flow. In § 3, we first give analytical results
in the Stokes- and potential-flow limits, followed by computed results for shear flows
about spheres and cylinders, dividing these according to whether the inertia is weak
to moderate (0 <Re � 10) or strong (Re> 10). In § 4, results are given on the rotation
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rate and the stresslet (symmetric first moment of the surface stress) of particles in
simple shear flow over a range of Re.

2. Governing equations and numerical technique
2.1. Problem formulation

We present here a general problem formulation used for all flow computations in
this work. We consider a neutrally buoyant rigid particle of size a immersed in fluid
that is undergoing simple shear flow, u∞ = (γ̇ y, 0, 0), at the outer boundary, which
in the ideal case would be taken infinitely far from the particle. For spheres and
circular cylinders, a is the radius, while for spheroids or elliptical cylinders, a is the
half-length of the major axis. We take the origin to be the centre of the particle. The
1 or flow direction is denoted by x, the 2 or velocity gradient direction by y, and
the 3 or vorticity direction by z. The flow is governed by the steady Navier–Stokes
equations for fluid of kinematic viscosity ν = µ/ρ, with µ the dynamic viscosity and
ρ the density,

∇ · u =0, Re (u · ∇) u = −∇p + �u, (1)

shown in dimensionless form. Here and below, the position vector x is scaled by a,
the fluid velocity u by γ̇ a, and the pressure p by the characteristic viscous stress µγ̇ .
The particle shear-flow Reynolds number is defined as Re= γ̇ a2/ν = ργ̇ a2/µ.

On the surface of the particle, the fluid velocity matches that of the body, and
thus is required to be either zero for the fixed body, or to be in rigid body rotation
at rate Ω such that the particle experiences no hydrodynamic torque. Owing to the
symmetry of the shear flow and the particle geometry, the rotation rate is anticipated
to be of the form Ω = Ωez. Finally, far from the particle, the velocity should return
to the imposed simple shear flow. The boundary conditions applied to (1) are thus

u = Ω × x, (2)

on the particle surface and

u = γ̇ yex, (3)

on the outer boundary. In computing numerical solutions to (1), we truncate our fluid
domain either by a bounding rectangular box or a bounding outer surface of the
same geometry as the immersed particle. This outer boundary for the particle-shaped
domain is characterized by the geometric parameter R∞. For an isotropic domain, R∞

is the outer radius, whereas it is the minor axis half-length for an anisotropic (elliptical
or ellipsoidal) domain. The manner of imposing the condition (3) will depend on the
mesh design used to solve the flow problem in its discretized form, as described in
§ 2.3.

For freely suspended particles in shear flow, the boundary condition (2) is not
straightforward since the torque-free rotation rate is unknown for arbitrary Re, and
thus

T (Ω) =

∫
Γp

[x × (σ (Ω) · n)] · ez dx = 0, (4)

must be solved for the appropriate Ω . Here, n is the normal vector pointing out of
the particle and σ , the fluid stress, is a function of Ω through the boundary condition
(2) used in determining u. Applying Newton’s method to (4) results in the following
linearization, which we set to zero (hence the final equality) based on the smallness
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of the torque for satisfactory solutions,

T (Ωk+1) ≈ T (Ωk) +
∂T

∂Ω
(Ωk)(Ωk+1 − Ωk) = 0, (5)

where k is an iteration index. Using ∂T /∂Ω(Ωk) ≈ (T (Ωk + �Ω) − T (Ωk))/�Ω in (5)
yields

Ωk+1 =Ωk − T (Ωk)

(∂T /∂Ω)(Ωk)
. (6)

Given Ω0, we seek to determine u numerically by solving (1) and (2) with Ω =Ω0.
Compute T (Ω0) from (4) and for k = 0, 1, 2, . . . perform the following steps: (i) solve
(1) and (2) with Ω = Ωk +�Ω; (ii) compute T (Ωk +�Ω); (iii) compute (∂T /∂Ω)(Ωk)
from the difference formula; (iv) determine Ωk+1 from (6); (v) solve (1) and (2) with
Ω = Ωk+1 and compute T (Ωk+1). Taking �Ω =0.001 works well in practice. Iteration
is continued until T < 0.0001, which typically occurs in only one or two iterations for
a reasonable initial guess (e.g. a previously computed Ω from a nearby Re).

2.2. Finite-element solution method

We have used a finite-element approach, with two different flow solvers, to construct
approximate solutions to the Navier–Stokes equations. The direct solver, detailed in
§ A.1, uses Newton’s method for the nonlinearity coupled with MATLAB’s linear
systems sparse solver and is our preferred method for two-dimensional problems. For
three-dimensional problems with their larger computational and storage requirements,
§ A.2 presents an iterative solver that employs a conjugate gradient linear solver with
a nonlinear least-squares conjugate gradient method to resolve the nonlinearity. This
flow solver is attractive because it requires relatively small memory.

We begin with a generic version of (1) in dimensional form

∇ · u = 0,

ρ(u · ∇)u − µ�u + ∇p = f in Vf ,

u = g on Γ,


 (7)

where Vf ⊂ Rn with n= 2 or 3, Γ ⊂ Rn−1 denotes the boundary, u : Vf → Rn denotes
the fluid velocity, p : Vf → Rn is the fluid pressure, and f is a forcing term that is
either a physical body force or comes from a nonlinear iteration scheme. We solve for
the full velocity field u rather than the disturbance velocity in order to take advantage
of existing iterative methods developed for the structure of the basic Navier–Stokes
equations. Integrating (7) against smooth test functions, {v : Vf → Rn, v = 0 on Γ }
and {q : Vf → R} leads to the weak or generalized form:∫

Vf

(∇ · u)q dx = 0,

∫
Vf

ρ[(u · ∇)u] · v dx +

∫
Vf

µ∇u : ∇v dx −
∫

Vf

p(∇ · v) dx =

∫
Vf

f · v dx.




(8)

A solution requires that u ∈ H 1(Vf ) = { y : | y|, |∇ y| ∈ L2(Vf )}, v ∈ H 1
0 (Vf ) = { y : y ∈

H 1(Vf ), y = 0 on Γ }, and p, q ∈ L2(Vf ). Solutions (u, p) and test functions (v, q)
must have at least these minimal regularity properties: velocity trial and test functions
and their derivatives must be square integrable, and pressure trial and test functions
must be square integrable.
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We now define the finite-element solution of the problem as

∫
Vf

(∇ · uh)qh dx = 0,

∫
Vf

ρ[(uh · ∇)uh] · vh dx +

∫
Vf

µ∇uh : ∇vh dx −
∫

Vf

ph(∇ · vh) dx =

∫
Vf

f · vh dx,

uh = g on Γ,




(9)

where uh ∈ V̂h ⊂ H 1(Vf ), vh ∈ Vh ⊂ H 1
0 (Vf ) and ph, qh ∈ Qh ⊂ L2(Vf ) with h indicating

a finite dimensional space. The space in which the unknown solution, u or p, is
approximated is known as the trial space, while the space of weights, v or q , is known
as the test space. For this Dirichlet problem, the pressure level must also be specified,
accomplished here by setting the pressure at one point on the outer boundary to zero.

We discretize using the MINI element (Arnold, Brezzi & Fortin 1984), defined by
approximating the pressure trial and test spaces by piecewise linear and continuous
functions on a triangular or tetrahedral mesh. These functions are taken to be the
standard P1 interpolating functions (Thommaset 1981). A basis for this space is the
set of linear, continuous functions {ψi} with ψi = 1 at vertex i and ψi = 0 at all other
vertices in the mesh. Hence, the dimension of the pressure space is equal to the total
number of vertices in a mesh, NN , less one for specifying the pressure level (≈ NN for
further discussion). Given this basis, the pressure can be expanded as ph =

∑NN

j=1 Pjψj

so that Pj is the value of the pressure at vertex j .
The velocity trial and test spaces are constructed from the same piecewise linear and

continuous functions defined on the same mesh. They are augmented by additional
functions, known as bubble functions, which are piecewise cubic polynomials for
triangular meshes and piecewise quartic polynomials for tetrahedral meshes. One
particular basis for the bubble functions is defined such that φi = 1 at the centroid
of simplex i and φi = 0 along its boundary as well as the rest of the domain. The
total dimension of the velocity test space is then n(NN +NL), where NL is the number
of simplices in a mesh. (To be precise, since u is prescribed on Γ , the dimension is
actually n(NN + NL − ND), where ND � NN + NL is the number of vertices that lie on
Γ .) The velocity can then be written as uh =

∑NN +NL

j=1 U jφj . For j =1, . . . , NN, φj

is ψj , and U j is the velocity at vertex j . The remaining U j are regarded as stability
parameters, paired with the bubble functions, and have no direct correspondence to
the value of the velocity at the simplex centroid.

Recall that direct methods are used in this study for solving the flow in two
dimensions, while an iterative method is employed for three-dimensional problems.
Detailed descriptions of these methods are found in the Appendix.

2.3. Finite-element mesh design

We use triangular meshes for problems in the plane and tetrahedral meshes for three-
dimensional problems. For shear flow past a sphere with Re < 10, we use structured
tetrahedral meshes based on the underlying structure of the spherical annulus. The
mesh is made by starting with the octant x � 0, y � 0, z � 0. Spherical coordinates
are used to describe the spherical annulus and the azimuthal angle is divided by 12
vertices into 11 segments of π/24. Likewise, the polar angle is divided by 12 vertices
into 11 segments of π/24. The radial direction is discretized to allot more points near
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Figure 1. The mesh on the particle surface for flow computation for shear flow (a) past a
sphere up to Re =10, (b) a sphere at Re> 10, (c) a prolate spheroid, and (d) an oblate spheroid.
A portion of the mesh used for flow field computation for shear flow past (e) a cylinder and
(f ) an elliptical cylinder.

the surface. This is accomplished by taking

rj = exp

[
j log 2

9

]
, j = 0, 1, . . . , 9;

rj = exp

[
log 2 + (j − 9)

log 10 − log 2

5

]
, j =10, 11, . . . , 14;

rj = exp

[
log 10 + (j − 14)

log 50 − log 10

5

]
, j = 15, 16, . . . , 19;

rj = exp

[
log 50 + (j − 19)

log 100 − log 50

2

]
, j = 20, 21.




(10)

Each (r, φ, θ) interval is then divided into six tetrahedra. Finally, the mesh is
completed over the full space by reflections into the other octants. This gives 926
vertices on the sphere surface, or any constant radius surface, as shown in figure 1(a).

The formulae for the radial discretization define a family of meshes indexed by j

with different sized outer boundaries. For example, taking j = 0, 1, . . . , 14 gives a mesh
described by R∞ = 10 while taking j = 0, 1, . . . , 21 gives R∞ = 100. Computations from
meshes with differing R∞ thus share identical vertices for the intersection of the two
vertex sets.

For oblate and prolate spheroids, the mesh was generated in the same manner as
above, but using prolate or oblate spheroidal coordinates (Moon & Spencer 1971)
rather than spherical coordinates. Consequently, the spheroids also have 926 vertices
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on their surfaces and any conforming surface. The surface meshes are shown in
figure 1(c, d). The oblate meshes are also rotated about the azimuthal angle. The
oblate meshes only have mesh symmetry with respect to the z =0 plane.

For high Re computations in the box domain, we use an unstructured mesh.
This facilitates using a very high concentration of vertices near the particle surface
to resolve sharp gradients without having the total number of vertices become
prohibitively large. The mesh was computed using the FEMLAB mesh generator.
The parameters used in the mesh generation were designed to concentrate more
mesh points near the particle surface. A mesh discretization for the sphere surface
is shown in figure 1(b). The mesh was generated in this manner for the quadrant
x � 0, y � 0, z � 0 and then reflected into the full space to enforce the symmetries in
the flow problems. Figure 1(b) shows the 4782 vertices that lie on the sphere surface
of the mesh.

For two-dimensional computations, we use unstructured grids. For shear flow
past cylinders, the cylinder surface is discretized with 628 vertices and is shown in
figure 1(e). The cylinder mesh has symmetry with respect to both x and y axes. The
mesh used for flow past an ellipse is also shown in figure 1(f ) and has 160 vertices
on the ellipse surface.

While the boundary condition of no-slip at the body surface is independent of the
domain, different outer boundary conditions are applied depending upon whether the
annular or box domain is employed. For small to moderate inertia, Re< 10, we use
a spherical annulus of outer radius R∞ as domain. In this case, the outer boundary
condition is a direct return to simple shear on the outer boundary, u = u∞ at r = R∞,
with u∞ = γ̇ yex . For the spheroidal domains used with anisotropic bodies, the same
form of outer boundary condition was used, although larger Re were considered here.
For the box domain employed at large Re, error associated with large wakes prompts
use of the outflow boundary condition (Gresho & Sani 1998): the outer boundary
condition is u = γ̇ yex at the box boundary, except on the portions of the domain
which would be outflow surfaces in the undisturbed flow (for example, the portion of
one end of the box where x > 0 and y > 0) where we set (∇ u − p I) · n = 0 with n the
normal to this surface. This is described further in § 3.3.

2.4. Validation of flow solver: non-isotropic bodies in shear flow

The numerical algorithms were thoroughly tested against a variety of known results.
In order to evaluate the performance at finite Re in the flow of interest, we first
compare with analytical results for the torque on a prolate spheroid in Stokes shear
flow, and then confirm and extend recent results showing the existence in simple shear
of steady finite-Re torque-free states for elliptical cylinders and oblate spheroids.

Analytical results for the torque at zero Re on a spheroid fixed in simple shear
(Kim & Karrila 1991) were used for the case of a prolate spheroid aligned with its long
axis along the vorticity direction. The prolate spheroid surface is defined by x2/b2 +
y2/b2 + z2/a2 = 1, with a > b. Calculations were performed on a prolate spheroidal
annulus with outer dimension in the plane of shear R∞ =5b, and the annular volume
was discretized using structured tetrahedral meshes in prolate spheroidal coordinates
(Moon & Spencer 1971) as discussed in § 2.3. Agreement was excellent for a/b =1 to
a/b = 5, as illustrated by figure 2.

Computed results were obtained for finite-Re flow around elliptical cylinders and
oblate spheroids at varying angles of inclination, φ, from the positive x-axis in the
(x, y) plane. For both bodies, φ > 0 when measured in a counterclockwise direction.
The elliptical cylinder surface with φ = 0 is defined by x2/a2 + y2/b2 = 1, with a/b > 1
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Figure 2. Computed (symbols) and analytical (line; Kim & Karrila 1991) torque at Re= 0
on prolate spheroids of aspect ratio a/b in simple shear flow. The major axis of the body is
aligned with vorticity of the undisturbed flow. The torque, T , is scaled by a3µγ̇ .

here. Meshing of the fluid volume was performed using unstructured triangular meshes
in a box-bounded domain with H = 5a and L = 25a. The oblate spheroid surface
with φ = 0 is defined by x2/a2 + y2/b2 + z2/a2 = 1, with a > b. The Reynolds number
characterizing the flow is defined in terms of the long axis, Re= γ̇ a2/ν. Meshing of the
oblate spheroidal annular fluid volume (of R∞ =5b) was with structured tetrahedral
meshes in an oblate spheroidal coordinate system (Moon & Spencer 1971). Recall
that, in either case, return to simple shear flow was imposed at the outer boundary.

Lattice-Boltzmann equation solutions of the flow (Aidun, Lu & Ding 1998) found
torque-free steady states for simple shear flow around oblate spheroids and elliptical
cylinders, and this has been confirmed experimentally for elliptical cylinders by
Zettner & Yoda (2001b). Our results agree with these findings, both validating our
numerical approach at finite Re and extending the known steady states for these
non-isotropic bodies in shear flows.

The torque-free and freely suspended body undergoes a time-dependent motion
in the general case, with this motion a Jeffrey orbit at Re= 0. For our steady-flow
solver, it is thus convenient to seek torque-free steady states at finite Re by fixing the
body at a given inclination angle, φ, relative to the direction of the undisturbed shear
flow, with φ measured counterclockwise from the flow direction. The torque for an
elliptical cylinder of a/b = 1.25 fixed at varying angles of inclination −π/2 < φ < π/2
is shown for Re = 0, 43 and 50 in figure 3(a), showing a single torque-free state at
α

.
= 0.05π (9◦) at Re= 43. For Re < 43, the torque is always negative (clockwise),

while for R > 43, there exist two zero-torque positions, of which one is stable as
discussed below. There exists a minimum Reynolds number at which a torque-free
state is first observed, termed Recr and for the case a/b = 1.25 having value Recr .

= 43,
for which these two zero-torque orientations coalesce to a single value, and this angle
is plotted as a function of a/b in figure 3(b). The data points are labelled with a
triplet (a/b, Recr , φcr ) indicating the conditions, where φcr is the inclination angle at
which the torque vanishes. Note that φcr < 11.7◦ in the range studied, but does not
vary monotonically with a/b. The implications of the torque on the elliptic cylinder in
shear have been considered by Ding & Aidun (2000); these authors have found that
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Figure 3. (a) Torque per unit length, scaled by a2µγ̇ , on fixed elliptical cylinder of a/b = 1.25
as a function of inclination angle, φ, relative to the shear flow direction at Re= 0, 43 and 50
showing torque-free states for the non-zero Re. (b) Minimum Re at which a torque-free steady
flow is observed for simple shear about an elliptical cylinder of varying aspect ratio a/b. Points
are labelled with the triplet (Recr , a/b, φcr ) giving conditions at the first point, for increasing
Re, of vanishing torque.

above Recr the system exhibits a saddle-node bifurcation, and that the scaling of the
period of rotation, τ , for Re <Recr as τ ∼ C(Recr − Re)−1/2 with C independent of Re
is thus a universal property owing to the behaviour near any saddle node. Similar to
Ding & Aidun, we may assess the stability of the two torque-free points for Re = 50
and a/b = 1.25, representative of a general condition with Re>Recr . Labelling the
zeros of the Re = 50 curve from left to right as φ1 and φ2, the zero φ2 ≈ 0.1π represents
the stable position for this body, as a perturbation to smaller angle carries it into
a region where the torque is positive (−T < 0 in the figure) and it would be driven
back toward φ2. Analysis of this same portion of the curve indicates that a positive
perturbation away from φ1 would thus carry the system along the small arc of the
curve for which −T < 0 to φ2, whereas a perturbation to φ <φ1 (left of φ1) brings the
system to a negative torque, which would drive a further decrease in φ and passage
to the stable φ2 from the opposite direction.

Our results agree well with available experimental and numerical results for the
elliptical cylinder. Consistent with the trends discussed by Zettner & Yoda (2001b),
Recr apparently diverges as a/b approaches unity, and decreases as a/b increases. At
a/b = 2, we find Recr .

= 7.5, in good agreement with the value of Recr =7.25 reported
by Ding & Aidun (2000). In figure 4(a), the flow pattern for the critical state of an
elliptical cylinder of a/b = 4, with Recr = 2 and φcr =8.4◦, is illustrated. Flow reversal
zones comparable to those of a sphere with radius equal to the minor axis b, which
will be considered further in the following section, are a prominent feature of all of
these torque-free states. Note that a closed streamline region, which must exist in the
rotating case, is absent.

Torque-free steady flows were also found in limited studies of the oblate spheroid
with its minor axis lying on the (x, y) plane. These were found to agree with the
results of Ding & Aidun (2000) obtained by the lattice-Boltzmann technique. For
example, Ding & Aidun found the torque-free condition of Recr ≈ 20.25 at a/b =2,
and we find Recr = 21. The angle of inclination, φcr = 18◦, is larger than for the same
aspect ratio elliptical cylinder, for which figure 3(b) shows the value to be φcr = 11.6◦

at a/b = 2. Streamlines and body inclination are illustrated for this condition in
figure 4(b).
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Figure 4. Body inclination and steady-flow streamlines in simple shear about stationary
torque-free bodies: (a) elliptical cylinder at Recr = 2, a/b = 4 and φcr = 8.4◦; (b) oblate spheroid,
with minor axis on the shear-velocity gradient plane, at Recr = 21, a/b =2 and φcr = 18◦.

3. Simple shear flow around cylinder and sphere at varying Re

The flows caused by a cylinder and sphere in simple shear over a range of Reynolds
number have been computed. The flows caused by the different immersed objects have
certain similarities, but the sphere causes a considerably more complex flow pattern.
We begin in § 3.1 by considering the Stokes-flow and inviscid limits for fixed and free
bodies. This is followed in § 3.2 by study of the flow at weak to moderate inertia,
primarily around freely rotating bodies. We then describe the results for strong
inertial shear flow for both fixed and free bodies in § 3.3; these include observation of
separation in these flows.

3.1. Limiting behaviour: Stokes- and inviscid-flow solutions

The flows due to simple shear flow around a cylinder or sphere at Re ≡ 0 are
analytically known for both the fixed and free cases, and the streamlines in the vicinity
of the bodies from this condition provide an important baseline for comparison with
results at finite Re. The streamlines are shown in figure 5. Unlike the case for uniform
flow past a body in two dimensions, there is no net force on the cylinder here and thus
there exists a solution for the Stokes flow. The relevant formulae can be described in
a single form for both fixed and free bodies by considering a general rotation rate of
the body. For the cylinder, these are

ux = 1
2
y(1 − r−4) + 1

2
y(1 − r−2) − 2x2y(r−4 − r−6) − Ωy

r2
,

uy = 1
2
x(1 − r−4) − 1

2
x(1 − r−2) − 2xy2(r−4 − r−6) +

Ωx

r2
,


 (11)
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Figure 5. Streamlines from the analytical solutions for simple shear flow about bodies in the
Stokes flow under fixed and free conditions, and potential flow (left to right, respectively, for
the three conditions) for a cylinder in the upper row and sphere in the lower row.

and for the sphere,

ux = 1
2
y(1 − r−5) + 1

2
y(1 − r−3) − 5

2
x2y(r−5 − r−7) − Ωy

r3
,

uy = 1
2
x(1 − r−5) − 1

2
x(1 − r−3) − 5

2
xy2(r−5 − r−7) +

Ωx

r3
,

uz = − 5
2
xyz(r−5 − r−7).




(12)

The rotation of either body when torque-free is with angular velocity equal to the
undisturbed fluid vorticity, or Ω = 1/2 in the scaling used here.

There are obvious qualitative differences evident at Re = 0 for the flow of viscous
fluid around a fixed body relative to that about a freely suspended and rotating body.
For the freely suspended case, rotation is accompanied, for any Re, by a region of
closed streamlines with inner boundary on the body; for Re = 0, this region is known
to extend infinitely in the flow direction for the circular cylinder (Kossack & Acrivos
1974), and to infinity in the flow and vorticity directions of the driving shear flow
for the sphere. For a fixed body at Re= 0, reverse flow regions exist, in which fluid
which comes from (x < 0, y > 0) reverses direction near the y = 0 plane and recedes
from the body into the quadrant (x < 0, y < 0).

Flow reversal of this general form is also seen for shear flow in the limit of inviscid
flow for two dimensions, where Ω = 0 owing to the lack of surface tractions; the
inviscid flow solution for shear flow about a circular cylinder is given by Kossack &
Acrivos (1974):

ux = y − 1
2
y(r−2 + r−4) − (x2 − y2)y

r6
, uy = 1

2
x(r−2 − r−4) +

(x2 − y2)x

r6
. (13)

For the sphere, the irrotational (potential) flow solution satisfying vanishing normal
velocity at the surface of the body is given by

ux = y +
y

3r5
− 5

3

x2y

r7
, uy =

x

3r5
− 5

3

xy2

r7
, uz = −5

3

xyz

r7
, (14)
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but it should be noted that this is not a solution of the inviscid equations for three-
dimensional flow, because u · ∇ u �=0 and the undisturbed vortex lines are, in fact,
turned into the streamwise direction and stretched in passage around a sphere; the
role of this irrotational solution in developing a lift force and its short-time evolution
is considered in Legendre & Magnaudet (1998). We have included this result only to
emphasize the similarity in limiting-flow structures for the cylinder and sphere (on
the plane of shear). Streamlines from these flow solutions in the vicinity of the bodies
are also presented in figure 5. The limiting solutions indicate that for a fixed body it
must be expected that, regardless of Re, there will be reversed flow zones in simple
shear. For rotating bodies, the limiting Re= 0 and inviscid cases suggest the observed
behaviour: the closed streamline region collapses and the body rotates progressively
more slowly relative to the undisturbed vorticity as Re increases, while the reverse
flow regions approach the body at large Re. The influence of viscosity results in a
boundary layer on the body surface and separated flow occurs for both the cylinder
and sphere. While the behaviour demonstrated by the large-Re solutions may not
be experimentally realizable, the results may have theoretical relevance and are in
the spirit of the large-ReU solutions for uniform flow past a cylinder and sphere by
Fornberg (1985, 1988, respectively).

3.2. Moderate fluid inertia: 0 <Re � 10

As Re is increased from zero, the influence of inertia for a fixed cylinder or sphere
is not readily apparent from comparison of the streamlines of the flow with its
Stokes-flow counterpart, a point which may be rationalized from the similarity of the
inviscid streamlines with those in Stokes flow about the fixed bodies. Hence, for these
lower Reynolds numbers, we consider only flow about freely rotating bodies.

By contrast to the case of the fixed bodies, the difference in topology of the Stokes
and inviscid streamlines about freely rotating bodies is reflected in a dramatic change
of the streamlines of finite-Re flow about these bodies. This is true even for relatively
weak inertia, and is demonstrated by the collapse of the closed streamline region.
This is illustrated by figure 6: the limiting closed streamlines for Re = 0.1, 1 and 10
are shown in (a) and (b) for the circular cylinder and sphere, respectively; the points
at which the limiting closed streamlines cross the y = 0 plane for the sphere under
the same conditions in (c) show the rapidity of the collapse in all directions. Limiting
streamlines are presented for R∞ = 150 for both the cylinder and the sphere, and are
not sensibly changed by further increase in R∞.

The extent of the closed streamline region may also be assessed by the distance from
the centre of the body to the stagnation point between the closed streamlines and the
reverse flow. Comparison of the results with the theory in its region of validity, Re � 1,
based on the asymptotic analysis of Poe & Acrivos (1975), is shown in figures 7(a) and
7(b) for the cylinder and for the sphere, respectively. These results agree satisfactorily
with the theory provided the outer boundary R∞ is sufficiently large that the reverse
flow regions are not significantly affected. Results for both geometries at Re � 1,
where the stagnation point moves far from the body according to theory, show outer
boundary influence at R∞ = 10, as the distance to the stagnation point is reduced well
below the theoretical value approached in larger domains. Deviation from the theory
even for convergence with respect to R∞ for the sphere occurs at Re ≈ 10−2 rather
than Re ≈ 10−1 for the cylinder, a result which may be influenced by the coarser mesh
used for the sphere.

The three-dimensional streamline structure near the sphere is shown in figure 8 for
Re = 0, 1 and 10. In figure 9, the disturbance streamlines on the shear plane are shown
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Figure 6. Limiting closed streamlines for torque-free bodies in simple shear flow (ux = y)
about the (a) circular cylinder and (b) sphere in the plane of shear at Re= 0.1 (solid line),
1 (dashed) and 10 (dotted). In (c) are the points where the limiting closed streamlines cross
y = 0 in the case of the sphere.
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Figure 8. Streamlines near the torque-free sphere at Re= 0, 1 and 10 (left to right).
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Figure 9. Streamlines and velocity vectors of the disturbance flow caused by a torque-free
sphere in simple shear flow for (a) Re = 0, (b) Re =1 and (c) Re= 10.

for a sphere, also at Re= 0, 1 and 10. The disturbance is found by taking the complete
velocity and subtracting the undisturbed shear flow, i.e. we present u′ = u − u∞. The
streamlines shown then follow the definition of being locally tangent to the velocity
vector, here u′, and the relative magnitude of the disturbance field is illustrated by
presenting vectors of u′; the scale of these vectors follows by noting that they have
magnitude of |u′| ≈ 1 (dimensional form |u′| ≈ γ̇ a) on the surface of the sphere at
x = ±1. A notable feature is that at Re = 0, the particle introduces a flow parallel in
form but opposite in direction to the extensional component of u∞, while at Re =1
and 10, the disturbance flow rather evidently contains significant vorticity.

The surface traction vector, which will be denoted t , is given by t ≡ σ · n evaluated
from the fluid stress σ at the surface of the body, with surface normal n projecting
into the fluid. The surface traction vector has component normal to the surface
(n · σ · n) and a component tangential to the surface (‘shear’ component) and thus
lying in the plane perpendicular to n. For a cylinder, these are readily visualized in
a standard x–y plot. The same is true of the equivalent stress components on the
surface of a sphere on the shear plane (z = 0). In figure 10, for Re = 0, 1 and 10,
the normal stresses on a cylinder are plotted in (a) and on the shear plane for a
sphere in (b). The tangential stress at these Re for a cylinder and sphere appear in
figures 10(c) and 10(d), respectively. The shape of the curves for cylinder and sphere
and direction of deviation from the Stokes-flow result at finite Re are seen to be quite
similar; although the magnitude of deviation from Stokes-flow results are similar for
the normal stress, the shear stress deviation is significantly smaller for the sphere.

3.3. Strong fluid inertia: Re > 10

To probe flow behaviour as Re → ∞, we alter the computational approach detailed in
§ 2, for which we observe that the number of iterations required for the iterative solver
to achieve an acceptable level of convergence increases with Re and with the size of
the computed domain. The success of Newton’s method used by the direct solver is
also negatively influenced by the domain size. The end result is that computations for
Re > 10 were found to be impractical for the large domains required in simulating
unbounded flows. To study the flow development near the bodies at Re � 1, we
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Figure 10. For zero and moderate Re, normal tractions for (a) cylinder and (b) sphere on
the shear plane, and tangential tractions for (c) cylinder and (d) sphere in plane of shear. The
stresses are scaled by µγ̇ .

have designed the following numerical experiment applied to flow past a cylinder
or a sphere. The particle is centred within a channel with boundaries at x = ±L,
y = ±H , and for a sphere at z = ±W . We limit the size of our domain so that
W = H = 2a and L = 5a (this maintains the channel Re at values which were found
to remain stable). The boundary condition of return to simple shear flow, u = γ̇ yex ,
generates the most error for downstream boundaries since high-Re flows generally
produce wakes that stretch to large distances in the streamwise direction. On these
downstream boundaries, i.e. x =L, y > 0 and x = −L, y < 0, we use the outflow
boundary condition, (∇u − pI) · n = 0, recommended by Gresho & Sani (1998), with
a condition of return to shear flow on all other boundaries. Because the conditions
simulated are restrictive, we present only results associated with near-body flows.

Considering first the cylinder, the streamlines for flow at 10 <Re < 85 are qualita-
tively similar to those shown for Re =10 illustrated in the preceding section. However,
for Re> 85 there is a qualitative change near the body as boundary-layer separation
is observed for the fixed cylinder, as illustrated for Re = 100 and 500 in figures 11(a)
and 11(b), respectively. At sufficiently elevated Re, the streamlines around the fixed
and freely rotating body become essentially indistinguishable, even in the separation
region, as the closed streamlines are compressed extremely near the body. This is
illustrated by comparing the streamlines for the fixed and freely rotating condition
at Re= 500 in figures 11(b) and 11(c), respectively. The development from conditions
near the critical Re for separation to a dual vortex structure at elevated Re is demon-
strated by the close views of the separation (wake) region in figure 11 at Re =100, 200
and 500 for the fixed cylinder, as well as for the torque-free rotating case at Re= 500.
Figures 11 and 12 illustrate the very slight dependence on the surface condition of
the flow away from the body.
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Figure 11. Streamlines for imposed simple shear ux = γ̇ y (arrows show direction) around
a circular cylinder for (a) Re =100, fixed; (b) Re= 500, fixed; and (c) Re= 500, torque-free
(freely rotating).
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Figure 13. Streamlines at Re= 100 for (a) a fixed sphere and (b) a torque-free (freely
rotating) sphere. Direction of the imposed shear flow ux = γ̇ y is indicated by the arrows.
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Figure 14. Surface tractions computed in the box domain used for elevated Re. Surface
pressure, scaled by µγ̇Re= ργ̇ 2a2, shown in (a) for the cylinder and in (b) for shear plane of
the sphere. Tangential tractions, scaled by µγ̇ , are shown in (c) for the cylinder and in (d) for
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In figure 13(a), streamlines in shear flow about the fixed sphere at Re= 100 are
illustrated. These show a zone of streamlines in the range π/8 < φ < π/4 which appear
to emanate from multiple stagnation points on the downstream side of the sphere,
indicative of separation and confirmed by the traction data described below. We find
Re ≈ 100 is very near the lower limit of Re for the observation of this behaviour
for spherical particles in the domain used for computation, but have not sought the
precise value because of the potential limitations placed on general validity by the
small domain.

At sufficiently elevated Re, the streamlines provide clear evidence of separation, as
shown for the cylinder in figure 11, but the situation is less clear near the onset of
the phenomenon. Surface tractions provide a clearer guide, and surface tractions for
the cylinder and shear plane of a sphere are shown in figure 14 as a function of the
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Figure 15. Rotation rate deviation from zero-Re value for (a) cylinder (curve from
Robertson & Acrivos 1970) and (b) sphere (curves from Lin et al. 1970 and Stone et al. 2001).

angle θ defined positive clockwise from θ =0 on the negative x-axis. Caution must
be exercised because the Re of onset of separation may be influenced by the near
boundary of the domain. We consider first the excess pressure, in figures 14(a) and
14(b). Results for the sphere are found to be noisier in this domain with unstructured
mesh, and a smooth curve fitted to the data appears along with the actual computed
values. The pressure is of similar form to the normal traction in figure 10, but is
of opposite sign owing to the standard convention of writing the isotropic portion
of the stress as −p I . The pressure is considered here because of the accepted role
of pressure gradients along the surface in determining separation. We see that at
Re = 10, the pressure curves for cylinder or sphere are very similar, with the excess
pressure continuously decreasing downstream of the point θ = π/2, and no separation
is observed here. At Re =100, the excess pressure is positive over all angles for
either the surface of the cylinder or the shear plane of the sphere, but undergoes non-
monotonic variation downstream of θ = π/2. In figure 14(c), illustrating the tangential
traction component for the cylinder, the form of the curve evidences separation at
Re = 100 and 200, but not at Re= 50, indicating onset in the range 50 <Re < 100; the
inset shows the stress on a magnified scale. Specifically, we take the non-monotonic
variation of the tangential traction in conjunction with its local maxima and minima
of opposite sign on the ‘downstream’ portion of the surface, π/2 < θ < π, as indicative
of separation. The first appearance of separation based on this definition is found at
Re ≈ 85. For the sphere, figure 14(d) shows the tangential traction curve at Re= 100
is nearly flat in this region, but the inset shows three closely spaced zeros.

4. Rotation rate and stresslet
4.1. Variation of rotation rate with Re

For the torque-free isotropic bodies, the rotation rate is determined as part of the
flow solution, by the approach outlined in § 2. Either body has a rotation rate at
Re = 0 equal to the fluid vorticity, or Ω0 = −1/2, and whose magnitude decreases
with increasing Re. The difference Ω − Ω0 is plotted along with the theoretical result
appropriate to the geometry of the body, in figure 15(a) for the cylinder and in
figure 15(b) for the sphere. The zero-Re values of rotation rate computed for the
cylinder are within 0.2% of the theoretical value of Ω0 = −1/2 for R∞ > 10 (and
always of slightly larger magnitude), while table 1 shows the computed values of Ω0

to be within 0.1% of the theoretical value for the sphere. The agreement with theory



234 D. R. Mikulencak and J. F. Morris

R∞ Ω0 S0
12

10 −0.4996 11.043
50 −0.4996 10.962

100 −0.4996 10.961
300 −0.4996 10.961

1000 −0.4996 10.961

Table 1. Computed Re= 0 values for the sphere rotation rate and shear component
of the stresslet.
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Figure 16. Rotation rates of the freely suspended circular cylinder and sphere in simple shear
flow computed in this work along with results from other numerical and experimental studies.

of Robertson & Acrivos (1970) who found Ω = −1/2 + 0.1443Re is good for the
cylinder at Re < 0.1 for sufficiently large outer radius of the domain, with R∞ =150
being sufficient for 10−3 < Re< 10−1. Deviation from the theory begins at Re> 0.1.
For the sphere, we find almost perfect agreement with the theory of Stone et al.
(2001) for 0.005 <Re < 0.05 for R∞ =100, and deviation from the theory is judged
to be significant for Re > 0.1. The slope of the theory of Lin et al. (1970) is identical,
but is offset from our results by a constant factor of approximately 3: the theories
predict ΩLPS = −1/2 + 0.0535Re3/2 and ΩSBL = −1/2 + 0.1538Re3/2, and our results
agree closely with ΩSBL. In figure 16, the torque-free cylinder and sphere rotation
rates computed in this work are plotted with the results of other finite-Re numerical
and experimental studies. Here, the reduction in |Ω | is seen to be generally smaller for
the sphere, primarily because of the weaker dependence on Re of the deviation from
Ω0 in the asymptotic theories noted above, O(Re3/2) for the sphere and O(Re) for
the cylinder. At large Re, the decrease of |Ω | for sphere and cylinder with Re is very
similar as seen by the slope drawn for this portion of our data. The difference between
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the Ω values for either body determined using the two computational domains at
Re = 10, with the wall-bounded (box) domain value significantly lower than that in
the annular domain, suggests strong boundary effects for the box domain for either
a cylinder or sphere. Such boundary effects appear in the experimental results as
well: the appearance of more than one trend line in data from experimental studies
indicates different ratios of the body size to shear-flow gap (a/H ) and the reader is
referred to the references for complete details. Our results are generally consistent
with the trend previously illustrated by Ding & Aidun (2000) (see their figure 2),
specifically that the rotation rate generally is larger, and the magnitude of its negative
slope with respect to increasing Re is smaller, for larger a/H . For example, our
results for the cylinder at a/H = 1/2 in the box domain have larger |Ω | and weaker
slope than do the results of Ding & Aidun at a/H = 1/4 and these results in turn
have rotation rate larger and slope weaker than the results of Kossack & Acrivos
(1974) with a/H → 0. A plausible explanation for this result which has not, to our
knowledge, been previously offered is given simply by considering that the limiting
case of a/H = 1 requires the immersed body to move with the driving boundaries
(with which it is in this case in contact), and the results reflect the influence of this
condition.

4.2. Stresslet at finite Re

For Stokes flow, it is well known that the traction at the surface of the particle can
be related to the particle contribution to the bulk stress. By considering a volume or
ensemble average of the stress in the suspension, Batchelor (1970) showed that the
sum of hydrodynamic stresslets, with the stresslet for a rigid sphere given by

Sij = 1
2

∫
Ap

(xiσjk + xjσik)nk dA, (15)

where Ap represents the sphere surface with nk the normal from the surface, results
in the dilute, or Einstein, viscosity contribution of the particles η(φ) = µ(1 + 5φ/2).
In general, there are nonhydrodynamic contributions from interparticle forces and
Brownian motion as well (Russel, Saville & Schowalter 1989) and these have been
considered both analytically for dilute pair interactions (e.g. by Brady & Morris 1997)
and for concentrated systems by simulation (Phung, Brady & Bossis 1996). While
we consider only hydrodynamic stresses, for a finite-Reynolds-number suspension the
stresslet is not the only contribution. In this case, the presence of the convective
acceleration, u · ∇ u, in the momentum equation, introduces an added mechanism
for momentum transport, well-known as a Reynolds stress in turbulent flows, but
present in laminar conditions when particles disturb the shear flow. The hydrodynamic
particle stress is given by

Σp

3φ/4π
= S − Re

1

2

∫
Vp

(xa + ax) dV − Re

∫
Vp+Vf

(u − u∞)(u − u∞) dV, (16)

where S is the stresslet given just above, and a represents the local material accelera-
tion. The integral over the particle volume is due to the acceleration of the body
(recall that even in steady rotation, the body is constantly under angular acceleration)
and the integration over the entire (particle plus fluid) volume has the form of a
Reynolds stress. We address here only the first term, the extension of the stresslet to
flow at finite Reynolds number about a rigid body.

We present in figure 17 various rheologically interesting quantities resulting from
the stresslet on a sphere. These include S12 plotted as the difference from the zero-Re
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Figure 17. Components of the deviation of the stresslet, scaled by µγ̇ a3, from zero-Re
values as function of Re: (a) the shear component S12, (b) S11 − S22, (c) S22 − S33 and
(d) (S11 +S22 +S33)/3. The curves are from theories of Lin et al. (1970) and Stone et al. (2001).

value (computed zero-Re values appear in table 1 and are systematically above the
theoretical value of S12,0 = 10π/3 ≈ 10.47 by roughly 5%), the first (S11 − S22) and
second (S22 − S33) normal stress difference contributions, and the trace of the stresslet
given by Sii/3 = (S11 +S22 +S33)/3. The last is a quantity related to what is termed the
‘suspension pressure,’ and shown analytically to be zero at Re= 0 for a single sphere
by Jeffrey, Morris & Brady (1993). Theoretical predictions of both Lin et al. (1970)
and Stone et al. (2001) are plotted along with the computed results. The predictions
of Lin et al. (1970) are

S12 =
10π

3
+ 5.61 Re3/2, S11 − S22 =

−16π

9
Re + 1.202 Re3/2,

S22 − S33 =
409π

315
Re − 1.056 Re3/2;


 (17)

those of Stone et al. (2001) include also the trace of the stresslet and are

S12 =
10π

3
+ 1.82 Re3/2, S11 − S22 =

−16π

9
Re + 3.343 Re3/2,

S22 − S33 =
409π

315
Re − 1.558 Re3/2, 1

3
Sii =

19π

36
Re.


 (18)

The two theories agree in predicting that the first influence of inertia is to generate
finite normal stress effects at O(Re), with the numerical values also in agreement at
this level. The theories differ, however, at O(Re3/2), as seen previously for the rotation
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rate. Our results again agree more closely with Stone et al. for S12; agreement of the
theories for the leading-order normal stress differences makes a comparison with the
numerics for these quantities unclear.

5. Concluding remarks
The problem of simple shear flow around suspended bodies is basic to suspension

mechanics, and, in the general case, involves finite inertia, particle interactions and
unsteadiness. This work has addressed only a subset of these flows, as we have studied
the role of inertia for stationary shear flows around isolated bodies. While we have
confirmed and extended results for elliptical cylinders, our examination has focused
on flow around the circular cylinder and sphere.

We have observed that introducing weak inertia causes a very rapid collapse of
the closed streamline region around freely-rotating bodies. Theory predicts infinitely
extended closed streamlines in the flow direction at Re= 0; the extent along this axis
for the cylinder and sphere is, respectively, 2.2 and 2.8 radii at Re = 0.1. Collapse in
the vorticity direction for an immersed sphere is similarly rapid. We conclude that
the infinite extent of closed streamlines at Re =0 is apparently a singular behaviour,
and the streamlines at weak inertia thus cannot be effectively approximated by their
Stokes-flow form.

An observation related to the closed streamlines is that the streamlines in simple
shear flow about fixed and free bodies, which are qualitatively distinct at Re= 0,
become progressively more similar as the inertia level increases. The dependence
on the motion of the surface is of little consequence away from the body for
Re � O(1). By considering a wall-bounded computational domain, we have extended
consideration to Re � 1, and have observed separation for the fixed cylinder at Re ≈ 85
and for the fixed sphere at Re ≈ 100. The presence of closed streamlines orbiting the
freely rotating body always contrasts with the immobile fluid contacting the fixed
body, yet the stationary flow patterns of fixed and free bodies become essentially
indistinguishable – even in the appearance of separation features – when Re =100 or
greater. Further increase of inertial influence, to Re= 500, for the cylinder leads to
predictions of paired standing vortices on the downstream side of the body, for either
condition. The physical realizability of these results is unclear, because the steady
flow may become unstable.

The strong disturbance caused by the immersed body even at smaller Re has
been observed to impact upon the larger-scale flow. This was shown for fixed (but
force-free) cylinders and spheres by Bottin et al. (1997, 1998), while Matas, Morris &
Guazzelli et al. (2003) have shown that neutrally buoyant, and presumably on average
force-free, suspended spherical particles at dilute conditions lead to laminar–turbulent
transition in a pipe at substantially lower pipe Reynolds number than observed for
the pure fluid. In the latter of these studies, particle-scale inertia was argued to play a
role as pronounced effects of the dilute particles were seen only for Re = O(1). Study
of the coupling of the particle scale to bulk scale flows may benefit from results
presented here.

The role of inertia upon the stresslet contributions to the bulk suspension stress
have been examined for Re< 10. Our results confirm the first influence of Re is
O(Re) in the normal stresses and O(Re3/2) in the shear stress component, consistent
with the scaling predicted first for simple shear flow by Lin et al. (1970) and later
for more general linear flows by Stone et al. (2001). We find better, and in fact very
good, agreement with the coefficients obtained by Stone et al. for these Re-dependent
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quantities. Both the computed stress and rotation rate suggest a missing constant
factor in the calculations by Lin et al. Numerical evaluation of the complete stress,
including Reynolds stress contributions, generated by a sphere at finite Re is deferred
to future work.

This work was supported in part by the Georgia Tech Foundation and in part by
the Army Research Office. Helpful and motivating discussions with Professors Cyrus
Aidun and Élizabeth Guazzelli regarding the physical problems, and with Professors
Don Estep and Mike Holst regarding the numerics are gratefully acknowledged.

Appendix. Direct and iterative solution methods
A.1. A direct solver for two-dimensional flow

We use direct methods for solving fluids problems in two dimensions. An application
of the finite-element discretization presented above leads to a nonlinear system of
algebraic equations, which we convert using Newton’s method to a series of linear
problems. We use MATLAB’s direct sparse solver to solve each resulting system of
linear equations.

Rather than discretizing the Navier–Stokes equations and then linearizing the
resulting algebraic equations as needed in a Newton iteration, we reverse the order
of these two steps. For finite-element or projection type discretizations, the two
operations commute so that in the end the same set of equations defining Newton’s
method result. The starting point for this approach (Holst, Baker & Wang 2000)
begins with the weak form of the Navier–Stokes equations written as

〈F (u, p), (v, q)〉 =

∫
Vf

(∇ · u)q dx +

∫
Vf

ρ[(u · ∇)u] · v dx +

∫
Vf

µ∇u : ∇v dx

−
∫

Vf

p(∇ · v) dx −
∫

Vf

f · v dx = 0. (A 1)

We combine the momentum and continuity equations into one weak form (with
the restriction that we test separately with q and v to maintain their separate
contributions). Written in this way, we think of 〈F (·), ·〉 as a functional of (u, p) and
form its variational derivative as

〈DF (u, p)(w, s), (v, q)〉 =
d

dε
〈F (u + εw, p + εs), (v, q)〉|ε=0, (A 2)

which when applied to (19) results in

〈DF (u, p)(w, s), (v, q)〉 =

∫
Vf

(∇ · w)q dx +

∫
Vf

ρ[(u · ∇)w] · v dx

+

∫
Vf

ρ[(w · ∇)u] · v dx +

∫
Vf

µ∇w : ∇v dx −
∫

Vf

s(∇ · v) dx.

(A 3)

In practice, we use the MINI element to discretize (A 1) and (A 3) where wh =∑NN +NL

j=1 W jφj , sh =
∑NN

j=1 Sjψj , and we take as test functions ([φi, 0], 0) and ([0, φi], 0)
for i = 1, . . . , NN + NL and ([0, 0], ψi) for i =1, . . . , NN . Given a (uh, ph) from either
an initial guess or a previous iteration, (A 1) and (A 3) lead to a sparse matrix of size
2(NN + NL) + NN × 2(NN + NL) + NN for 〈DF (uh, ph)(wh, sh), (vh, qh)〉 and a vector
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of length 2(NN + NL) + NN for 〈F (uh, ph), (vh, qh)〉. These discrete forms are used in
the following Newton iteration scheme.

Algorithm 1. Newton’s method for the discrete Navier–Stokes equations.
Given u0

h and p0
h, set k = 0, 1, 2, . . .

1. Compute 〈F (uk
h, p

k
h), (vh, qh)〉.

2. Compute 〈DF (uk
h, p

k
h)(wh, sh), (vh, qh)〉.

3. Compute wh and sh such that 〈DF (uk
h, p

k
h)(wh, sh), (vh, qh)〉 = −〈F (uk

h, p
k
h),

(vh, qh)〉, ∀ (vh, qh).
4. Set uk+1

h = uk
h + wh and pk+1

h = pk
h + sh.

We use the sparse solver in MATLAB to handle the system of linear equations
that arises for each iteration of Newton’s method. We iterate until ‖〈F (uk

h, p
k
h),

(vh, qh)〉‖ < 1.0 × 10−8.

A.2. Iterative solver for the discretized Navier–Stokes problems

We apply an iterative approach to handle the nonlinearity generated by the discretized
Navier–Stokes equations (9). The method is especially attractive for large-scale
problems since it simplifies to a sequence of discrete Stokes problems and hence
only requires the storage of two sparse matrices. As opposed to a Newton iteration,
these matrices only need to be assembled once, not at every iteration. Furthermore,
all the linear algebra problems that arise involve symmetric positive definite matrices
and are easily solved with conjugate gradient methods. Since this approach has been
well documented by Glowinski (1984), we provide only a summary. The approach
begins by interpreting the solution of the Navier–Stokes equations as the solution
to a minimization problem. Recall the weak formulation of the Navier–Stokes
equations (8), taking u = g on Γ . If we automatically require all velocity functions
to be weakly divergence-free by introducing the new velocity trial space Ṽg =

{w ∈ Vg,
∫

Vf
(∇ · w)q dx = 0, ∀q ∈ Q} and the corresponding velocity test space Ṽ0,

this weak formulation is equivalent to∫
Vf

µ∇u : ∇v dx +

∫
Vf

ρ[(u · ∇)u] · v dx =

∫
Vf

f · v dx, ∀v ∈ Ṽ0,

u = g on Γ.


 (A 4)

This form lends itself to an equivalent minimization problem for u

J (u) <J (w), ∀w ∈ Ṽg,

J (w) = 1
2
µ

∫
Vf

| ∇ ξ (w)|2 dx.


 (A 5)

Problem (A 5) has the structure of a control problem where the state equation for ξ

is governed by the Stokes equation for the velocity–pressure pair (ξ, π)∫
Vf

(∇ · ξ )q dx = 0,

∫
Vf

µ∇ξ : ∇v dx−
∫

Vf

π(∇ · v) dx =

∫
Vf

µ∇w : ∇v dx+

∫
Vf

ρ[(w · ∇)w] · v dx−
∫

Vf

f · v dx,

ξ = 0 on Γ.




(A 6)
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Glowinski (1984) shows that the solution to the minimization problem (A 5) occurs
when ξ = 0 which then yields J (u) = 0. The minimizing u is also the solution to (A 4),
and because it is in the space Ṽg , u also solves (8). The pressure satisfying (8) is then
given by p = −π.

In practice, we replace all the above continuous formulations with the MINI finite
element discretization previously discussed. In order to find the discrete minimizer
uh, we employ a conjugate gradient algorithm, which requires the gradient of the
functional, J . We present without details the variational derivative (Glowinski 1984),

〈J ′(w), v〉 =

∫
Vf

µ∇ξ : ∇v dx +

∫
Vf

ρ[(v · ∇)w] · ξ dx +

∫
Vf

ρ[(w · ∇)v] · ξ dx, (A 7)

which leads to the following algorithm.

Algorithm 2. Nonlinear least-squares conjugate gradient method for the discretized
Navier–Stokes equations (Glowinski 1984).

For u0
h ∈ Ṽgh, compute z0

h by first determining ξ 0
h from

∫
Vf

(
∇ · ξ 0

h

)
qh dx = 0,

∫
Vf

µ∇ξ 0
h : ∇vh dx−

∫
Vf

π0
h(∇ · vh) dx =

∫
Vf

µ∇u0
h : ∇vh dx +

∫
Vf

ρ
[(

u0
h · ∇

)
u0

h

]
· vh dx,

−
∫

Vf

f · vh dx

ξ 0
h = 0 on Γ,



(A 8)

and then the preconditioned descent direction from

∫
Vf

(
∇ · z0

h

)
qh dx=0,

∫
Vf

µ∇z0
h : ∇vh dx −

∫
Vf

ζ 0
h (∇ · vh) dx=

〈
J ′

h

(
u0

h

)
, v

〉
.




(A 9)

Then set d0
h = −z0

h and for k = 0, 1, 2, . . . ,
1. Find the descent parameter αk such that

αk =Arg min
α ∈ R

Jh

(
uk

h + αdk
h

)
. (A 10)

2. uk+1
h = uk

h + αkdk
h.

3. Determine the new descent direction by solving

∫
Vf

(
∇ · zk+1

h

)
qh dx=0,

∫
Vf

µ∇zk+1
h : ∇vh dx −

∫
Vf

ζ k+1
h (∇ · vh) dx=

〈
J ′

h

(
uk+1

h

)
, v

〉
.




(A 11)
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4. Compute

βk+1 =

µ

∫
Vf

∇zk+1
h : ∇

(
zk+1
h − zk

h

)
dx

µ

∫
Vf

∇zk
h : ∇zk

h dx
. (A 12)

5. dk+1
h = −zk+1

h + βk+1dk
h.

In order to solve step 1 in this algorithm, we implement the strategy of Bristeau
et al. (1985). Each iteration of algorithm 2 requires the solution of three discrete
Stokes problems: one for the descent direction and then two to determine the descent
parameter α. The conjugate gradient method described by Braess (1997) is used
to solve each of these Stokes problems. We continue algorithm 2 until the discrete
momentum residual, equation (9), has no component larger than 1 × 10−5. This
tolerance almost always coincides with Jh(u0

h)/Jh(uk+1
h ) < 106.
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